

Welcome to VulnerableCode!

VulnerableCode provides an open database of software packages that are affected
by known security vulnerabilities aka. “vulnerable packages”.

VulnerableCode is also a free and open source software (FOSS) project that
provides the tools to build this open database. The tools handle collecting,
aggregating and correlating these vulnerabilities and relating them to a correct
package version. Our project also supports a public cloud instance of this
database - VulnerableCode.io.

In this documentation you will find information on:

	An overview of VulnerableCode and what you can do with it

	Installation instructions

	How to make technical contributions to the project and the community

Getting Started

	VulnerableCode Overview
	What can I do with VulnerableCode?

	Why VulnerableCode?

	How does it work?

	How can I contribute to VulnerableCode?

	User Interface
	Search by packages

	Search by vulnerabilities

	Installation
	Run with Docker

	Local development installation

	Using Nix

	API overview
	Browse the Open API documentation

	How to use OpenAPI documentation

	Query for Package Vulnerabilities

	Package Bulk Search

	CPE Bulk Search

	API endpoints reference

	Miscellaneous

	API usage administration for on-premise deployments
	Enable the API key authentication

	Create an API key-only user

	Contributing to VulnerableCode
	Do Your Homework

	Ways to Contribute

	Helpful Resources

	Add a new importer

	TL;DR

	Prerequisites

	Writing an importer

	Add a new improver

	TL;DR

	Prerequisites

	Writing an improver

	FAQ
	During development, how do I quickly empty my database and start afresh ?

	Miscellaneous
	Continuous periodic Data import

	Environment variables configuration

	Throttling rate configuration

Reference Documentation

	Importer Overview

	Improver Overview

	Framework Overview

	Model Overview
	Application

	Admin

	Command Line Interface
	$./manage.py --help

	$./manage.py <subcommand> --help

	$./manage.py import <importer-name>

	$./manage.py improve <improver-name>

	$./manage.py purl2cpe --destination <directory

	Importers

Summer of Codes

	Google Summer of Code 2021 Final Report

Indices and tables

	Index

	Module Index

	Search Page

VulnerableCode Overview

VulnerableCode provides an open database of software packages that are affected
by known security vulnerabilities aka “vulnerable packages”.

VulnerableCode is also a free and open source software (FOSS) project that
provides the tools to build this open database. The tools handle collecting,
aggregating and correlating these vulnerabilities and relating them to a correct
package version. Our project also supports a public cloud instance of this
database - VulnerableCode.io [https://public.vulnerablecode.io/].

What can I do with VulnerableCode?

For security researchers and software developers, VulnerableCode offers a web
UI and a JSON API to efficiently find if the FOSS packages and dependencies that
you use are affected by known vulnerabilities and to determine whether a later package version
fixes those vulnerabilities.

	With the web UI, you can search by package using Package URLs or search by
vulnerability, e.g., by CVE. From there you can navigate to the package
vulnerabilities and to the vulnerable packages.

	With the JSON API, you can perform package queries using Package URLs (purl [https://github.com/package-url/purl-spec]) or query
by vulnerability id (“VCID”). You can also query by CPEs and other vulnerability aliases.
The API provides paginated index and detail endpoints and includes indexes
of vulnerable CPEs and vulnerable Package URLs.

You can install VulnerableCode locally or use the provided publicly hosted instance,
or host your own installation. You can contact the VulnerableCode team
for special needs including commercial support.

Why VulnerableCode?

VulnerableCode provides open correlated data and will support curated
data. Our approach is to prioritize upstream data sources and to merge multiple
vulnerability data sources after comparison and correlation. The vulnerability
data is keyed by Package URL ensuring quick and accurate lookup with minimal
friction. We continuously validate and refine the collected data for
quality, accuracy and consistency using “improver” jobs.
An example is an improver that can validate that a package version reported as
vulnerable actually exists (some do not exist). Another example is to re-evaluate
vulnerable version ranges based on the latest releases of a
package.

The benefit of our approach is that we will eventually provide better, more
accurate vulnerability data for packages reported in an SBOM.
This should contribute to more efficient vulnerability
management with less noise from false positives.

Another key reason why we created VulnerableCode is that
existing vulnerability database solutions are primarily commercial
or proprietary. This does not make sense because the bulk of the vulnerability
data is about FOSS.

The National Vulnerability Database, which is a primary centralized data
source for known vulnerabilities, is not particularly well suited to
address FOSS security issues because:

	It predates the explosion of FOSS software usage

	Its data format reflects a commercial vendor-centric point of view in part
due to the usage of CPEs [https://nvd.nist.gov/products/cpe] to map
vulnerabilities to existing packages.

	CPEs were not designed to map FOSS to vulnerabilities owing to their
vendor-product centric semantics. This makes it really hard to answer the
fundamental questions: “Is package foo vulnerable?” and “Is package foo
vulnerable to vulnerability bar?”

How does it work?

VulnerableCode independently aggregates many software vulnerability data sources
and supports data re-creation in a decentralized fashion. These data sources
(see complete list
here [https://vulnerablecode.readthedocs.io/en/latest/importers_link.html#importers-link])
include security advisories published by Linux and BSD distributions,
application software package managers and package repositories, FOSS projects,
GitHub and more. Thanks to this approach, the data is focused on specific ecosystems and
aggregated in a single database that enables querying a richer graph of relations between multiple
representations of a package. Being specific increases the accuracy and validity
of the data as the same version of an upstream package across different
ecosystems may or may not be subject to the same vulnerability.

In VulnerableCode, packages are identified using Package URL (purl [https://github.com/package-url/purl-spec]) as the primary identifier instead of
a CPE. This makes answers to questions such as “Is package foo vulnerable
to vulnerability bar?” more accurate and easier to interpret.

The primary access to VulnerableCode data is through a REST API, but there
is also a Web UI for searching and browsing vulnerabilities by package
or by vulnerability. For the initial releases both access modes are
read-only, but our longer-term goal is to enable community curation of
the data including addition of new packages and vulnerabilities, and
reviewing and updating their relationships.

We also plan to mine for vulnerabilities that have not received any
exposure due to reasons such as the complicated
procedure to obtain a CVE ID or not being able to classify a bug as a vulnerability.

How can I contribute to VulnerableCode?

Please get in touch on our Gitter channel [https://gitter.im/aboutcode-org/vulnerablecode].
You can review or get the code and report issues at our GitHub repo [https://github.com/nexB/vulnerablecode/issues].

User Interface

Search by packages

The search by packages is a very powerful feature of
VulnerableCode. It allows you to search for packages by the
package URL or purl prefix fragment such as
pkg:pypi or by package name.

The search by packages is available at the following URL:

https://public.vulnerablecode.io/packages/search

How to search by packages:

	Go to the URL: https://public.vulnerablecode.io/packages/search

	Enter the package URL or purl prefix fragment such as pkg:pypi
or by package name in the search box.

	Click on the search button.

The search results will be displayed in the table below the search box.

[image: _images/pkg_search.png]

Click on the package URL to view the package details.

[image: _images/pkg_details.png]

Search by vulnerabilities

The search by vulnerabilities is a very powerful feature of
VulnerableCode. It allows you to search for vulnerabilities by the
VCID itself. It also allows you to search for
vulnerabilities by the CVE, GHSA, CPEs etc or by the
fragment of these identifiers like CVE-2021.

The search by vulnerabilities is available at the following URL:

https://public.vulnerablecode.io/vulnerabilities/search

How to search by vulnerabilities:

	Go to the URL: https://public.vulnerablecode.io/vulnerabilities/search

	Enter the VCID, CVE, GHSA, CPEs etc. in the search box.

	Click on the search button.

The search results will be displayed in the table below the search box.

[image: _images/vuln_search.png]

Click on the VCID to view the vulnerability details.

[image: _images/vuln_details.png]

Affected packages tab shows the list of packages affected by the
vulnerability.

[image: _images/vuln_affected_packages.png]

Fixed by packages tab shows the list of packages that fix the
vulnerability.

[image: _images/vuln_fixed_packages.png]

Installation

Warning

VulnerableCode is going through a major structural change and the
installations are likely to not produce enough results.
This is tracked in https://github.com/nexB/vulnerablecode/issues/597

Welcome to VulnerableCode installation guide! This guide describes how to install
VulnerableCode on various platforms.
Please read and follow the instructions carefully to ensure your installation is
functional and smooth.

The preferred VulnerableCode installation is to Run with Docker as this is
the simplest to setup and get started.
Running VulnerableCode with Docker guarantees the availability of all features with the
minimum configuration required.
This installation works across all Operating Systems.

Alternatively, you can install VulnerableCode locally as a development server with some
limitations and caveats. Refer to the Local development installation section.

Run with Docker

Get Docker

The first step is to download and install Docker on your platform.
Refer to Docker documentation and choose the best installation
path for your system: Get Docker [https://docs.docker.com/get-docker/].

Build the Image

VulnerableCode is distributed with Dockerfile and docker-compose.yml files
required for the creation of the Docker image.

Clone the git VulnerableCode repo [https://github.com/nexB/vulnerablecode],
create an environment file, and build the Docker image:

git clone https://github.com/nexB/vulnerablecode.git && cd vulnerablecode
make envfile
docker-compose build

Note

The image will need to be re-built when the VulnerableCode app source code is
modified or updated via
docker-compose build --no-cache vulnerablecode

Run the App

Run your image as a container:

docker-compose up

At this point, the VulnerableCode app should be running at port 8000 on your Docker host.
Go to http://localhost:8000/ on a web browser to access the web UI.
Optionally, you can set NGINX_PORT environment variable in your shell or in the .env file
to run on a different port than 8000.

Note

To access a dockerized VulnerableCode app from a remote location, the ALLOWED_HOSTS
and CSRF_TRUSTED_ORIGINS setting need to be provided in your docker.env file:

ALLOWED_HOSTS=.domain.com,127.0.0.1
CSRF_TRUSTED_ORIGINS=https://*.domain.com,http://127.0.0.1

Refer to Django ALLOWED_HOSTS settings [https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts]
and CSRF_TRUSTED_ORIGINS settings [https://docs.djangoproject.com/en/dev/ref/settings/#std-setting-CSRF_TRUSTED_ORIGINS]
for more details.

Warning

Serving VulnerableCode on a network could lead to security issues and there
are several steps that may be needed to secure such a deployment.
Currently, this is not recommendend.

Execute a Command

You can execute a one of manage.py commands through the Docker command line
interface, for example:

docker-compose run vulnerablecode ./manage.py import --list

Note

Refer to the Command Line Interface section for the full list of commands.

Alternatively, you can connect to the Docker container bash and run commands
from there:

docker-compose run vulnerablecode bash
./manage.py import --list

Local development installation

Supported Platforms

VulnerableCode has been tested and is supported on the following operating systems:

	Debian-based Linux distributions

	macOS 12.1 and up

Warning

On Windows VulnerableCode can only Run with Docker and is not supported.

Pre-installation Checklist

Before you install VulnerableCode, make sure you have the following prerequisites:

	Python: 3.8+ found at https://www.python.org/downloads/

	Git: most recent release available at https://git-scm.com/

	PostgreSQL: release 10 or later found at https://www.postgresql.org/ or
https://postgresapp.com/ on macOS

System Dependencies

In addition to the above pre-installation checklist, there might be some OS-specific
system packages that need to be installed before installing VulnerableCode.

On Debian-based distros, several system packages are required by VulnerableCode.
Make sure those are installed:

sudo apt-get install python3-venv python3-dev postgresql libpq-dev build-essential

Clone and Configure

Clone the VulnerableCode Git repository [https://github.com/nexB/vulnerablecode]:

git clone https://github.com/nexB/vulnerablecode.git && cd vulnerablecode

Install the required dependencies:

make dev

Note

You can specify the Python version during the make dev step using the following
command:

make dev PYTHON_EXE=python3.8.10

When PYTHON_EXE is not specified, by default, the python3 executable is
used.

Create an environment file:

make envfile

Database

PostgreSQL is the preferred database backend and should always be used on
production servers.

	Create the PostgreSQL user, database, and table with:

make postgres

Note

You can also use a SQLite database for local development as a single user
with:

make sqlite

Warning

Choosing SQLite over PostgreSQL has some caveats. Check this link [https://docs.djangoproject.com/en/dev/ref/databases/#sqlite-notes]
for more details.

Tests

You can validate your VulnerableCode installation by running the tests suite:

make test

Web Application

A web application is available to create and manage your projects from a browser;
you can start the local webserver and access the app with:

make run

Then open your web browser and visit: http://127.0.0.1:8000/ to access the web
application.

Warning

This setup is not suitable for deployments and only supported for local
development.

Upgrading

If you already have the VulnerableCode repo cloned, you can upgrade to the latest version
with:

cd vulnerablecode
git pull
make dev
make migrate

Using Nix

You can install VulnerableCode with Nix [https://nixos.org/download.html]
(Flake [https://nixos.wiki/wiki/Flakes] support is needed):

cd etc/nix
nix-shell -p nixFlakes --run "nix --print-build-logs flake check " # build & run tests

There are several options to use the Nix version:

Enter an interactive environment with all dependencies set up.
cd etc/nix
nix develop
> ../../manage.py ... # invoke the local checkout
> vulnerablecode-manage.py ... # invoke manage.py as installed in the nix store

Test the import prodecure using the Nix version.
etc/nix/test-import-using-nix.sh --all # import everything
Test the import using the local checkout.
INSTALL_DIR=. etc/nix/test-import-using-nix.sh ruby # import ruby only

Keeping the Nix setup in sync

The Nix installation uses mach-nix [https://github.com/DavHau/mach-nix] to
handle Python dependencies because some dependencies are currently not available
as Nix packages. All Python dependencies are automatically fetched from
./requirements.txt. If the mach-nix-based installation fails, you might
need to update mach-nix itself and the pypi-deps-db [https://github.com/DavHau/pypi-deps-db] version in use (see
etc/nix/flake.nix:inputs.machnix and machnixFor.pypiDataRev).

Non-Python dependencies are curated in:

etc/nix/flake.nix:vulnerablecode.propagatedBuildInputs

API overview

Browse the Open API documentation

	https://public.vulnerablecode.io/api/docs/ for documentation with Swagger

	https://public.vulnerablecode.io/api/schema/ for the OpenAPI schema

How to use OpenAPI documentation

The API documentation is available at https://public.vulnerablecode.io/api/docs/.
To use the endpoints you need to authenticate with an API key. Request your API key
from https://public.vulnerablecode.io/account/request_api_key/. Once you have
your API key, click on the Authorize button on the top right of the page and enter
your API key in the value field with Token prefix, so if your token is “1234567890abcdef”
then you have to enter this: Token 1234567890abcdef.

Query for Package Vulnerabilities

The package endpoint allows you to query vulnerabilities by package using a
purl or purl fields.

Sample python script:

import requests

Query by purl
resp = requests.get(
 "https://public.vulnerablecode.io/api/packages?purl=pkg:maven/log4j/log4j@1.2.27",
 headers={"Authorization": "Token 123456789"},
).json()

Query by purl type, get all the vulnerable maven packages
resp = requests.get(
 "https://public.vulnerablecode.io/api/packages?type=maven",
 headers={"Authorization": "Token 123456789"},
).json()

Sample using curl:

curl -X GET -H 'Authorization: Token <YOUR TOKEN>' https://public.vulnerablecode.io/api/packages?purl=pkg:maven/log4j/log4j@1.2.27

The response will be a list of packages, these are packages
that are affected by and/or that fix a vulnerability.

Package Bulk Search

The package bulk search endpoint allows you to search for purls in bulk. You can
pass a list of purls in the request body and the endpoint will return a list of
purls with vulnerabilities.

You can pass a list of purls in the request body. Each package should be a
valid purl string.

You can also pass options like purl_only and plain_purl in the request.
purl_only will return only a list of vulnerable purls from the purls received in request.
plain_purl allows you to query the API using plain purls by removing qualifiers
and subpath from the purl.

The request body should be a JSON object with the following structure:

{
 "purls": [
 "pkg:pypi/flask@1.2.0",
 "pkg:npm/express@1.0"
],
 "purl_only": false,
 "plain_purl": false,
}

Sample python script:

import requests

request_body = {
 "purls": [
 "pkg:npm/grunt-radical@0.0.14"
],
}

resp = requests.post('https://public.vulnerablecode.io/api/packages/bulk_search', json= request_body, headers={'Authorization': "Token 123456789"}).json()

The response will be a list of packages, these are packages
that are affected by and/or that fix a vulnerability.

CPE Bulk Search

The CPE bulk search endpoint allows you to search for packages in bulk.
You can pass a list of packages in the request body and the endpoint will
return a list of vulnerabilities.

You can pass a list of cpes in the request body. Each cpe should be a
non empty string and a valid CPE.

The request body should be a JSON object with the following structure:

{
 "cpes": [
 "cpe:2.3:a:apache:struts:2.3.1:*:*:*:*:*:*:*",
 "cpe:2.3:a:apache:struts:2.3.2:*:*:*:*:*:*:*"
]
}

Sample python script:

import requests

request_body = {
 "cpes": [
 "cpe:2.3:a:apache:struts:2.3.1:*:*:*:*:*:*:*"
],
}

resp = requests.post('https://public.vulnerablecode.io/api/cpes/bulk_search', json= request_body, headers={'Authorization': "Token 123456789"}).json()

The response will be a list of vulnerabilities that have the following CPEs.

API endpoints reference

There are two primary endpoints:

	packages/: this is the main endpoint where you can lookup vulnerabilities by package.

	vulnerabilities/: to lookup by vulnerabilities

And two secondary endpoints, used to query vulnerability aliases (such as CVEs)
and vulnerability by CPEs: cpes/ and aliases/

Table for the main API endpoints

	Endpoint

	Query Parameters

	Expected Output

	/api/packages

	
	purl (string) = package-url of the package

	type (string) = type of the package

	namespace (string) = namespace of the package

	name (string) = name of the package

	version (string) = version of the package

	qualifiers (string) = qualifiers of the package

	subpath (string) = subpath of the package

	page (integer) = page number of the response

	page_size (integer) = number of packages in each page

	Return a list of packages using a package-url (purl) or a combination of
type, namespace, name, version, qualifiers, subpath purl fields. See the
purl specification [https://github.com/package-url/purl-spec] for more details. See example at Query for Package Vulnerabilities section for more details.

	/api/packages/bulk_search

	Refer to package bulk search section Package Bulk Search

	Return a list of packages

	/api/vulnerabilities/

	
	vulnerability_id (string) = VCID (VulnerableCode Identifier) of the vulnerability

	page (integer) = page number of the response

	page_size (integer) = number of vulnerabilities in each page

	Return a list of vulnerabilities

	/api/cpes

	
	cpe (string) = value of the cpe

	page (integer) = page number of the response

	page_size (integer) = number of cpes in each page

	Return a list of vulnerabilities

	/api/cpes/bulk_search

	Refer to CPE bulk search section CPE Bulk Search

	Return a list of cpes

	/api/aliases

	
	alias (string) = value of the alias

	page (integer) = page number of the response

	page_size (integer) = number of aliases in each page

	Return a list of vulnerabilities

Table for other API endpoints

	Endpoint

	Query Parameters

	Expected Output

	/api/packages/{id}

	
	id (integer) = internal primary id of the package

	Return a package with the given id

	/api/packages/all

	No parameter required

	Return a list of all vulnerable packages

	/api/vulnerabilities/{id}

	
	id (integer) = internal primary id of the vulnerability

	Return a vulnerability with the given id

	/api/aliases/{id}

	
	id (integer) = internal primary id of the alias

	Return an alias with the given id

	/api/cpes/{id}

	
	id = internal primary id of the cpe

	Return a cpe with the given id

Miscellaneous

The API is paginated and the default page size is 100. You can change the page size
by passing the page_size parameter. You can also change the page number by passing
the page parameter.

API usage administration for on-premise deployments

Enable the API key authentication

There is a setting VULNERABLECODEIO_REQUIRE_AUTHENTICATION for this. Use it this
way:

$ VULNERABLECODEIO_REQUIRE_AUTHENTICATION=1 make run

Create an API key-only user

This can be done in the admin and from the command line:

$./manage.py create_api_user --email "p4@nexb.com" --first-name="Phil" --last-name "Goel"
User p4@nexb.com created with API key: ce8616b929d2adsddd6146346c2f26536423423491

Contributing to VulnerableCode

Thank you so much for being so interested in contributing to VulnerableCode. We
are always on the lookout for enthusiastic contributors like you who can make
our project better, and we are willing to lend a helping hand if you have any
questions or need guidance along the way. That being said, here are a few
resources to help you get started.

Note

By contributing to the VulnerableCode project, you agree to the Developer
Certificate of Origin [https://developercertificate.org/].

Do Your Homework

Before adding a contribution or create a new issue, take a look at the project’s
README [https://github.com/nexB/vulnerablecode], read through our
documentation [https://vulnerablecode.readthedocs.io/en/latest/],
and browse existing issues [https://github.com/nexB/vulnerablecode/issues],
to develop some understanding of the project and confirm whether a given
issue/feature has previously been discussed.

Ways to Contribute

Contributing to the codebase is not the only way to add value to VulnerableCode or
join our community. Below are some examples to get involved:

First Timers

You are here to help, but you are a new contributor! No worries, we always
welcome newcomer contributors. We maintain some
good first issues [https://github.com/nexB/vulnerablecode/labels/good%20first%20issue]
and encourage new contributors to work on those issues for a smooth start.

Tip

If you are an open-source newbie, make sure to check the extra resources at
the bottom of this page to get the hang of the contribution process!

Code Contributions

For more established contributors, you can contribute to the codebase in several ways:

	Report a bug [https://github.com/nexB/vulnerablecode/issues]; just remember to be as
specific as possible.

	Submit a bug fix [https://github.com/nexB/vulnerablecode/labels/bug] for any existing
issue.

	Create a new issue [https://github.com/nexB/vulnerablecode/issues] to request a
feature, submit a feedback, or ask a question.

Note

Make sure to check existing issues [https://github.com/nexB/vulnerablecode/issues],
to confirm whether a given issue or a question has previously been
discussed.

Documentation Improvements

Documentation is a critical aspect of any project that is usually neglected or
overlooked. We value any suggestions to improve
vulnerablecode documentation [https://vulnerablecode.readthedocs.io/en/latest/].

Tip

Our documentation is treated like code. Make sure to check our
writing guidelines [https://scancode-toolkit.readthedocs.io/en/latest/contribute/contrib_doc.html]
to help guide new users.

Other Ways

You want to contribute to other aspects of the VulnerableCode project, and you
cannot find what you are looking for! You can always discuss new topics, ask
questions, and interact with us and other community members on
AboutCode Gitter [https://gitter.im/aboutcode-org/discuss] and VulnerableCode Gitter [https://gitter.im/aboutcode-org/vulnerablecode]

Helpful Resources

	Review our comprehensive guide [https://scancode-toolkit.readthedocs.io/en/latest/contribute/index.html]
for more details on how to add quality contributions to our codebase and documentation

	Check this free resource on how to contribute to an open source project on github [https://egghead.io/courses/how-to-contribute-to-an-open-source-project-on-github]

	Follow this wiki page [https://aboutcode.readthedocs.io/en/latest/contributing/writing_good_commit_messages.html]
on how to write good commit messages

	Pro Git book [https://git-scm.com/book/en/v2]

	How to write a good bug report [https://www.softwaretestinghelp.com/how-to-write-good-bug-report/]

Add a new importer

This tutorial contains all the things one should know to quickly implement an importer.
Many internal details about importers can be found inside the
vulnerabilites/importer.py file.
Make sure to go through Importer Overview before you begin writing one.

TL;DR

	Create a new vulnerabilities/importers/importer_name.py file.

	Create a new importer subclass inheriting from the Importer superclass defined in
vulnerabilites.importer. It is conventional to end an importer name with Importer.

	Specify the importer license.

	Implement the advisory_data method to process the data source you are
writing an importer for.

	Add the newly created importer to the importers registry at
vulnerabilites/importers/__init__.py

Prerequisites

Before writing an importer, it is important to familiarize yourself with the following concepts.

PackageURL

VulnerableCode extensively uses Package URLs to identify a package. See the
PackageURL specification [https://github.com/package-url/purl-spec] and its Python implementation [https://github.com/package-url/packageurl-python] for more details.

Example usage:

from packageurl import PackageURL
purl = PackageURL(name="ffmpeg", type="deb", version="1.2.3")

AdvisoryData

AdvisoryData is an intermediate data format:
it is expected that your importer will convert the raw scraped data into AdvisoryData objects.
All the fields in AdvisoryData dataclass are optional; it is the importer’s resposibility to
ensure that it contains meaningful information about a vulnerability.

AffectedPackage

AffectedPackage data type is used to store a range of affected versions and a fixed version of a
given package. For all version-related data, univers [https://github.com/nexB/univers] library
is used.

Univers

univers [https://github.com/nexB/univers] is a Python implementation of the vers specification [https://github.com/package-url/purl-spec/pull/139].
It can parse and compare all the package versions and all the ranges,
from debian, npm, pypi, ruby and more.
It processes all the version range specs and expressions.

Importer

All the generic importers need to implement the Importer class.
For Git or Oval data source, GitImporter or OvalImporter could be implemented.

Note

GitImporter and OvalImporter need a complete rewrite.
Interested in Contributing to VulnerableCode ?

Writing an importer

Create Importer Source File

All importers are located in the vulnerabilites/importers directory.
Create a new file to put your importer code in.
Generic importers are implemented by writing a subclass for the Importer superclass and
implementing the unimplemented methods.

Specify the Importer License

Importers scrape data off the internet. In order to make sure the data is useable, a license
must be provided.
Populate the spdx_license_expression with the appropriate value.
The SPDX license identifiers can be found at https://spdx.org/licenses/.

Note

An SPDX license identifier by itself is a valid licence expression. In case you need more complex
expressions, see https://spdx.github.io/spdx-spec/v2.3/SPDX-license-expressions/

Implement the advisory_data Method

The advisory_data method scrapes the advisories from the data source this importer is
targeted at.
It is required to return an Iterable of AdvisoryData objects, and thus it is a good idea to yield
from this method after creating each AdvisoryData object.

At this point, an example importer will look like this:

vulnerabilites/importers/example.py

from typing import Iterable

from packageurl import PackageURL

from vulnerabilities.importer import AdvisoryData
from vulnerabilities.importer import Importer

class ExampleImporter(Importer):

 spdx_license_expression = "BSD-2-Clause"

 def advisory_data(self) -> Iterable[AdvisoryData]:
 return []

This importer is only a valid skeleton and does not import anything at all.

Let us implement another dummy importer that actually imports some data.

Here we have a dummy_package which follows NginxVersionRange and SemverVersion for
version management from univers [https://github.com/nexB/univers].

Note

It is possible that the versioning scheme you are targeting has not yet been
implemented in the univers [https://github.com/nexB/univers] library.
If this is the case, you will need to head over there and implement one.

from datetime import datetime
from datetime import timezone
from typing import Iterable

import requests
from packageurl import PackageURL
from univers.version_range import NginxVersionRange
from univers.versions import SemverVersion

from vulnerabilities.importer import AdvisoryData
from vulnerabilities.importer import AffectedPackage
from vulnerabilities.importer import Importer
from vulnerabilities.importer import Reference
from vulnerabilities.importer import VulnerabilitySeverity
from vulnerabilities.severity_systems import SCORING_SYSTEMS

class ExampleImporter(Importer):

 spdx_license_expression = "BSD-2-Clause"

 def advisory_data(self) -> Iterable[AdvisoryData]:
 raw_data = fetch_advisory_data()
 for data in raw_data:
 yield parse_advisory_data(data)

def fetch_advisory_data():
 return [
 {
 "id": "CVE-2021-23017",
 "summary": "1-byte memory overwrite in resolver",
 "advisory_severity": "medium",
 "vulnerable": "0.6.18-1.20.0",
 "fixed": "1.20.1",
 "reference": "http://mailman.nginx.org/pipermail/nginx-announce/2021/000300.html",
 "published_on": "14-02-2021 UTC",
 },
 {
 "id": "CVE-2021-1234",
 "summary": "Dummy advisory",
 "advisory_severity": "high",
 "vulnerable": "0.6.18-1.20.0",
 "fixed": "1.20.1",
 "reference": "http://example.com/cve-2021-1234",
 "published_on": "06-10-2021 UTC",
 },
]

def parse_advisory_data(raw_data) -> AdvisoryData:
 purl = PackageURL(type="example", name="dummy_package")
 affected_version_range = NginxVersionRange.from_native(raw_data["vulnerable"])
 fixed_version = SemverVersion(raw_data["fixed"])
 affected_package = AffectedPackage(
 package=purl, affected_version_range=affected_version_range, fixed_version=fixed_version
)
 severity = VulnerabilitySeverity(
 system=SCORING_SYSTEMS["generic_textual"], value=raw_data["advisory_severity"]
)
 references = [Reference(url=raw_data["reference"], severities=[severity])]
 date_published = datetime.strptime(raw_data["published_on"], "%d-%m-%Y %Z").replace(
 tzinfo=timezone.utc
)

 return AdvisoryData(
 aliases=[raw_data["id"]],
 summary=raw_data["summary"],
 affected_packages=[affected_package],
 references=references,
 date_published=date_published,
)

Note

Use make valid to format your new code using black and isort automatically.

Use make check to check for formatting errors.

Register the Importer

Finally, register your importer in the importer registry at
vulnerabilites/importers/__init__.py

 from vulnerabilities.importers import example
 from vulnerabilities.importers import nginx

 IMPORTERS_REGISTRY = [nginx.NginxImporter, example.ExampleImporter]

 IMPORTERS_REGISTRY = {x.qualified_name: x for x in IMPORTERS_REGISTRY}

Congratulations! You have written your first importer.

Run Your First Importer

If everything went well, you will see your importer in the list of available importers.

 $./manage.py import --list

 Vulnerability data can be imported from the following importers:
 vulnerabilities.importers.nginx.NginxImporter
 vulnerabilities.importers.example.ExampleImporter

Now, run the importer.

$./manage.py import vulnerabilities.importers.example.ExampleImporter

Importing data using vulnerabilities.importers.example.ExampleImporter
Successfully imported data using vulnerabilities.importers.example.ExampleImporter

See Command Line Interface for command line usage instructions.

Enable Debug Logging (Optional)

For more visibility, turn on debug logs in vulnerablecode/settings.py.

DEBUG = True
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'class': 'logging.StreamHandler',
 },
 },
 'root': {
 'handlers': ['console'],
 'level': 'DEBUG',
 },
}

Invoke the import command now and you will see (in a fresh database):

$./manage.py import vulnerabilities.importers.example.ExampleImporter

Importing data using vulnerabilities.importers.example.ExampleImporter
Starting import for vulnerabilities.importers.example.ExampleImporter
[*] New Advisory with aliases: ['CVE-2021-23017'], created_by: vulnerabilities.importers.example.ExampleImporter
[*] New Advisory with aliases: ['CVE-2021-1234'], created_by: vulnerabilities.importers.example.ExampleImporter
Finished import for vulnerabilities.importers.example.ExampleImporter. Imported 2 advisories.
Successfully imported data using vulnerabilities.importers.example.ExampleImporter

Add a new improver

This tutorial contains all the things one should know to quickly
implement an improver.
Many internal details about improvers can be found inside the
vulnerabilites/improver.py file.
Make sure to go through Improver Overview before you begin writing one.

TL;DR

	Locate the importer that this improver will be improving data of at
vulnerabilities/importers/importer_name.py file.

	Create a new improver subclass inheriting from the Improver superclass defined in
vulnerabilites.improver. It is conventional to end an improver name with Improver.

	Implement the interesting_advisories property to return a QuerySet of imported data
(Advisory) you are interested in.

	Implement the get_inferences method to return an iterable of Inference objects for the
given AdvisoryData.

	Add the newly created improver to the improvers registry at
vulnerabilites/improvers/__init__.py.

Prerequisites

Before writing an improver, it is important to familiarize yourself with the following concepts.

Importer

Importers are responsible for scraping vulnerability data from various data sources without creating
a complete relational model between vulnerabilites and their fixes and storing them in a structured
fashion. These data are stored in the Advisory model and can be converted to an equivalent
AdvisoryData for various use cases.
See Importer Overview for a brief overview on importers.

Importer Prerequisites

Improvers consume data produced by importers, and thus it is important to familiarize yourself with
Importer Prerequisites.

Inference

Inferences express the contract between the improvers and the improve runner framework.
An inference is intended to contain data points about a vulnerability without any uncertainties,
which means that one inference will target one vulnerability with the specific relevant affected and
fixed packages (in the form of PackageURLs [https://github.com/package-url/packageurl-python]).
There is no notion of version ranges here: all package versions must be explicitly specified.

Because this concrete relationship is rarely available anywhere upstream, we have to infer
these values, thus the name.
As inferring something is not always perfect, an Inference also comes with a confidence score.

Improver

All the Improvers must inherit from Improver superclass and implement the
interesting_advisories property and the get_inferences method.

Writing an improver

Locate the Source File

If the improver will be working on data imported by a specific importer, it will be located in
the same file at vulnerabilites/importers/importer-name.py. Otherwise, if it is a
generic improver, create a new file vulnerabilites/improvers/improver-name.py.

Explore Package Managers (Optional)

If your Improver depends on the discrete versions of a package, the package managers’ VersionAPI
located at vulnerabilites/package_managers.py could come in handy. You will need to
instantiate the relevant VersionAPI in the improver’s constructor and use it later in the
implemented methods. See an already implemented improver (NginxBasicImprover) for an example usage.

Implement the interesting_advisories Property

This property is intended to return a QuerySet of Advisory on which the Improver is
designed to work.

For example, if the improver is designed to work on Advisories imported by ExampleImporter,
the property can be implemented as

class ExampleBasicImprover(Improver):

 @property
 def interesting_advisories(self) -> QuerySet:
 return Advisory.objects.filter(created_by=ExampleImporter.qualified_name)

Implement the get_inferences Method

The framework calls get_inferences method for every AdvisoryData that is obtained from
the Advisory QuerySet returned by the interesting_advisories property.

It is expected to return an iterable of Inference objects for the given AdvisoryData. To
avoid storing a lot of Inferences in memory, it is preferable to yield from this method.

A very simple Improver that processes all Advisories to create the minimal relationships that can
be obtained by existing data can be found at vulnerabilites/improvers/default.py, which is
an example of a generic improver. For a more sophisticated and targeted example, you can look
at an already implemented improver (e.g., vulnerabilites/importers/nginx.py).

Improvers are not limited to improving discrete versions and may also improve aliases.
One such example, improving the importer written in the importer tutorial, is shown below.

from datetime import datetime
from datetime import timezone
from typing import Iterable

import requests
from django.db.models.query import QuerySet
from packageurl import PackageURL
from univers.version_range import NginxVersionRange
from univers.versions import SemverVersion

from vulnerabilities.importer import AdvisoryData
from vulnerabilities.improver import MAX_CONFIDENCE
from vulnerabilities.improver import Improver
from vulnerabilities.improver import Inference
from vulnerabilities.models import Advisory
from vulnerabilities.severity_systems import SCORING_SYSTEMS

class ExampleImporter(Importer):
 ...

class ExampleAliasImprover(Improver):
 @property
 def interesting_advisories(self) -> QuerySet:
 return Advisory.objects.filter(created_by=ExampleImporter.qualified_name)

 def get_inferences(self, advisory_data) -> Iterable[Inference]:
 for alias in advisory_data.aliases:
 new_aliases = fetch_additional_aliases(alias)
 aliases = new_aliases + [alias]
 yield Inference(aliases=aliases, confidence=MAX_CONFIDENCE)

def fetch_additional_aliases(alias):
 alias_map = {
 "CVE-2021-23017": ["PYSEC-1337", "CERTIN-1337"],
 "CVE-2021-1234": ["ANONSEC-1337", "CERTDES-1337"],
 }
 return alias_map.get(alias)

Note

Use make valid to format your new code using black and isort automatically.

Use make check to check for formatting errrors.

Register the Improver

Finally, register your improver in the improver registry at
vulnerabilites/improvers/__init__.py.

 from vulnerabilities import importers
 from vulnerabilities.improvers import default

 IMPROVERS_REGISTRY = [
 default.DefaultImprover,
 importers.nginx.NginxBasicImprover,
 importers.example.ExampleAliasImprover,
]

 IMPROVERS_REGISTRY = {x.qualified_name: x for x in IMPROVERS_REGISTRY}

Congratulations! You have written your first improver.

Run Your First Improver

If everything went well, you will see your improver in the list of available improvers.

 $./manage.py improve --list

 Vulnerability data can be processed by these available improvers:
 vulnerabilities.improvers.default.DefaultImprover
 vulnerabilities.importers.nginx.NginxBasicImprover
 vulnerabilities.importers.example.ExampleAliasImprover

Before running the improver, make sure you have imported the data. An improver cannot improve if
there is nothing imported.

$./manage.py import vulnerabilities.importers.example.ExampleImporter

Importing data using vulnerabilities.importers.example.ExampleImporter
Successfully imported data using vulnerabilities.importers.example.ExampleImporter

Now, run the improver.

$./manage.py improve vulnerabilities.importers.example.ExampleAliasImprover

 Improving data using vulnerabilities.importers.example.ExampleAliasImprover
 Successfully improved data using vulnerabilities.importers.example.ExampleAliasImprover

See Command Line Interface for command line usage instructions.

Enable Debug Logging (Optional)

For more visibility, turn on debug logs in vulnerablecode/settings.py.

DEBUG = True
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'class': 'logging.StreamHandler',
 },
 },
 'root': {
 'handlers': ['console'],
 'level': 'DEBUG',
 },
}

Invoke the improve command now and you will see (in a fresh database, after importing):

$./manage.py improve vulnerabilities.importers.example.ExampleAliasImprover

Improving data using vulnerabilities.importers.example.ExampleAliasImprover
Running improver: vulnerabilities.importers.example.ExampleAliasImprover
Improving advisory id: 1
New alias for <Vulnerability: VULCOID-23dd9060-3bc0-4454-bfbd-d16c08a966a6>: PYSEC-1337
New alias for <Vulnerability: VULCOID-23dd9060-3bc0-4454-bfbd-d16c08a966a6>: CVE-2021-23017
New alias for <Vulnerability: VULCOID-23dd9060-3bc0-4454-bfbd-d16c08a966a6>: CERTIN-1337
Improving advisory id: 2
New alias for <Vulnerability: VULCOID-fae4e06e-4815-45fe-ae95-8d2356ffb5b9>: CERTDES-1337
New alias for <Vulnerability: VULCOID-fae4e06e-4815-45fe-ae95-8d2356ffb5b9>: ANONSEC-1337
New alias for <Vulnerability: VULCOID-fae4e06e-4815-45fe-ae95-8d2356ffb5b9>: CVE-2021-1234
Finished improving using vulnerabilities.importers.example.ExampleAliasImprover.
Successfully improved data using vulnerabilities.importers.example.ExampleAliasImprover

Note

Even though CVE-2021-23017 and CVE-2021-1234 are not supplied by this improver, the output above shows them
because we left out running the DefaultImprover in the example. The DefaultImprover
inserts minimal data found via the importers in the database (here, the above two CVEs). Run
importer, DefaultImprover and then your improver in this sequence to avoid this anomaly.

FAQ

During development, how do I quickly empty my database and start afresh ?

$ dropdb vulnerablecode
$ make postgres

Miscellaneous

Continuous periodic Data import

If you want to run the import periodically, you can use a systemd timer.
Here is an example:

$ cat ~/.config/systemd/user/vulnerablecode.service

[Unit]
Description=Run VulnerableCode importers

[Service]
Type=oneshot
ExecStart=/path/to/venv/bin/python /path/to/vulnerablecode/manage.py import --all && /path/to/venv/bin/python /path/to/vulnerablecode/manage.py improve --all

$ cat ~/.config/systemd/user/vulnerablecode.timer

[Unit]
Description=Periodically run VulnerableCode importers

[Timer]
OnCalendar=daily

[Install]
WantedBy=multi-user.target

Start this timer with:

systemctl --user daemon-reload
systemctl --user start vulnerablecode.timer

Environment variables configuration

VulnerableCode loads environment variables from an .env file when provided.
VulnerableCode first checks the file at /etc/vulnerablecode/.env and if not
present, it will attempt to load a .env file from the checkout directory.

The file at /etc/vulnerablecode/.env has precedence.

Throttling rate configuration

The default throttling settings are defined in settings.py.

To override the default settings, add env variables in .env file
define the settings there. For example:

VULNERABLECODE_ALL_VULNERABLE_PACKAGES_THROTTLING_RATE = '1000/hour'
VULNERABLECODE_BULK_SEARCH_PACKAGE_THROTTLING_RATE = '10/minute'
VULNERABLECODE_PACKAGES_SEARCH_THROTTLING_RATE = '1000/second'
VULNERABLECODE_VULNERABILITIES_SEARCH_THROTTLING_RATE = '1000/hour'
VULNERABLECODE_ALIASES_SEARCH_THROTTLING_RATE = '1000/hour'
VULNERABLECODE_CPE_SEARCH_THROTTLING_RATE = '10/minute'
VULNERABLECODE_BULK_SEARCH_CPE_THROTTLING_RATE = '10/minute'

Importer Overview

Importers are responsible for scraping vulnerability data such as vulnerabilities and their fixes
and for storing the scraped information in a structured fashion. The structured data created by the
importer then provides input to an improver (see Improver Overview), which is responsible
for creating a relational model for vulnerabilities, affected packages and fixed packages.

All importer implementation-related code is defined in vulnerabilites/importer.py.

In addition, the framework-related code for actually invoking and processing the importers is
located in vulnerabilites/import_runner.py.

The importers, after scraping, provide AdvisoryData objects. These objects are then
processed and inserted into the Advisory model.

While implementing an importer, it is important to make sure that the importer does not alter the
upstream data at all. Its only job is to convert the data from a data source into structured – yet
non-relational – data. This ensures that we always have a true copy of an advisory without any
modifications.

Given that a lot of advisories publish version ranges of affected
packages, it is necessary to store those ranges in a structured manner. Vers was designed to
solve this problem. It has been implemented in the univers [https://github.com/nexB/univers]
library whose development goes hand in hand with VulnerableCode.

The data imported by importers is not useful by itself: it must be processed into a relational
model. The version ranges are required to be resolved into concrete ranges. These are achieved by
Improvers (see Improver Overview for details).

As of now, the following importers have been implemented in VulnerableCode:

	Importer Name

	Data Source

	Ecosystems Covered

	rust

	https://github.com/RustSec/advisory-db

	rust crates

	alpine

	https://secdb.alpinelinux.org/

	alpine packages

	archlinux

	https://security.archlinux.org/json

	arch packages

	debian

	https://security-tracker.debian.org/tracker/data/json

	debian packages

	npm

	https://github.com/nodejs/security-wg.git

	npm packages

	ruby

	https://github.com/rubysec/ruby-advisory-db.git

	ruby gems

	ubuntu

	
	ubuntu packages

	retiredotnet

	https://github.com/RetireNet/Packages.git

	.NET packages

	suse_backports

	http://ftp.suse.com/pub/projects/security/yaml/

	SUSE packages

	debian_oval

	https://www.debian.org/security/oval/

	debian packages

	redhat

	https://access.redhat.com/hydra/rest/securitydata/cve.json

	rpm packages

	nvd

	https://nvd.nist.gov/vuln/data-feeds#JSON_FEED

	none

	gentoo

	https://anongit.gentoo.org/git/data/glsa.git

	gentoo packages

	openssl

	https://www.openssl.org/news/vulnerabilities.xml

	openssl

	ubuntu_usn

	https://usn.ubuntu.com/usn-db/database-all.json.bz2

	ubuntu packages

	github

	https://api.github.com/graphql

	maven, .NET, php-composer, pypi packages. ruby gems

	msr2019

	https://raw.githubusercontent.com/SAP/project-kb/master/MSR2019/dataset/vulas_db_msr2019_release.csv

	maven packages

	apache_httpd

	https://httpd.apache.org/security/json

	apache-httpd

	kaybee

	https://github.com/SAP/project-kb.git

	maven packages

	nginx

	http://nginx.org/en/security_advisories.html

	nginx

	postgresql

	https://www.postgresql.org/support/security/

	postgresql

	elixir_security

	https://github.com/dependabot/elixir-security-advisories

	hex packages

	suse_scores

	https://ftp.suse.com/pub/projects/security/yaml/suse-cvss-scores.yaml

	vulnerability severity scores by SUSE

	mozilla

	https://github.com/mozilla/foundation-security-advisories

	mozilla

	mattermost

	https://mattermost.com/security-updates/

	mattermost server, desktop and mobile apps

Improver Overview

Improvers improve upon already imported data. They are responsible for creating a relational
model for vulnerabilites and packages.

An Improver is intended to contain data points about a vulnerability and the relevant discrete
affected and fixed packages (in the form of PackageURLs [https://github.com/package-url/packageurl-python]).
There is no notion of version ranges here; all package versions must be explicitly specified.
As this concrete relationship might not always be absolutely correct, improvers supply a
confidence score and only the record with the highest confidence against a vulnerability and package
relationship is stored in the database.

There are two categories of improvers:

	Generic: Improve upon some imported data irrespective of any importer. These improvers are
defined in vulnerabilites/improvers/.

	Importer Specific: Improve upon data imported by a specific importer. These are defined in the
corresponding importer file itself.

Both types of improvers internally work in a similar fashion. They indicate which Advisory they
are interested in and when supplied with those Advisories, they return Inferences.
An Inference is more explicit than an Advisory and is able to answer questions like “Is
package A vulnerable to Vulnerability B ?”. Of course, there is some confidence attached to the
answer, which could also be MAX_CONFIDENCE in certain cases.

The possibilities with improvers are endless; they are not restricted to take one approach. Features
like Time Travel and finding fix commits could be implemented as well.

You can find more in-code documentation about improvers in vulnerabilites/improver.py and
the framework responsible for invoking these improvers in vulnerabilites/improve_runner.py.

Framework Overview

 ┌────────────┐
┌──────────────────────┐ │ │ ┌─────────────────────┐
│ │ │ Database │ Has version ranges │ │
│ ├─────────────────────────────►│ in │ │ │
│ │ │ Advisory │ As true as upstream │ │
│ │ │ Model │ │ │
│ │ │ │ │ Frontend │
│ │ ├────────────┘ │ │
│ Importers │ │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
└──────────────────────┘ │ ┌──────────────────────►│ │
 │ │ └─────────────────────┘
 │ │
 │ │
 │ │
 │ │
 ┌───────────────────────┐ │ │
 │ │ │ │
 │ │◄──────────────────────────┘ ┌──────────────┐ │
 │ │ │Vulnerability │ │
 │ │ │ ID (auto) │ │
 │ Specific │ ├──────────────┤ │
 │ Improvers │ │ │ │
 │ │ │ Aliases │ │
 │ - BasicImproverer ├───►├──────────────┤ │
 │ │ │ ├─┘
 │ - TimeTravel │ │ Aff pkgs │
 │ │ ├──────────────┤
 │ - ... │ │ │
 │ │ │ Fixed pkgs │
 └───────────────────────┘ ├──────────────┤
 │ ... │
 └──────────────┘
 ▲
 │
 │
 │
 │
 │
 │
 │
 │
 │
 │
 │
 Independent to access any Advisory │
 ┌─────────────────────────┐ Generic to all data │
 │ │ │
 │ │ ───┘
 │ Generic Improvers │
 │ │
 │ - DefaultImprover │
 │ - ... │
 │ │
 │ │
 │ │
 │ │
 └─────────────────────────┘

Model Overview

This is a set of Graphviz-based graph diagrams of the application and admin models as of 2023-11-27:

Application

[image: alternate text]

Admin

[image: alternate text]

Command Line Interface

The main entry point is the Django manage.py management command script.

$./manage.py --help

Lists all sub-commands available, including Django built-in commands.
VulnerableCode’s own commands are listed under the [vulnerabilities] section:

$./manage.py --help
...
[vulnerabilities]
 import
 improve
 purl2cpe

$./manage.py <subcommand> --help

Displays help for the provided sub-command.

For example:

$./manage.py import --help
usage: manage.py import [-h] [--list] [--all] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--force-color]
 [--skip-checks]
 [sources [sources ...]]

Import vulnerability data

positional arguments:
 sources Fully qualified importer name to run

$./manage.py import <importer-name>

Import vulnerability data using the given importer name.

Other variations:

	--list List all available importers

	--all Run all available importers

$./manage.py improve <improver-name>

Improve the imported vulnerability data using the given improver name.

Other variations:

	--list List all available improvers

	--all Run all available improvers

$./manage.py purl2cpe --destination <directory

Dump a mapping of CPEs to PURLs grouped by vulnerability in the destination
directory.

Other variations:

	--limit Limit the number of processed vulnerabilities

Importers

	Importer Name

	Data Source

	Ecosystems Covered

	rust

	https://github.com/RustSec/advisory-db

	rust crates

	alpine

	https://secdb.alpinelinux.org/

	alpine packages

	archlinux

	https://security.archlinux.org/json

	arch packages

	debian

	https://security-tracker.debian.org/tracker/data/json

	debian packages

	npm

	https://github.com/nodejs/security-wg.git

	npm packages

	ruby

	https://github.com/rubysec/ruby-advisory-db.git

	ruby gems

	ubuntu

	
	ubuntu packages

	retiredotnet

	https://github.com/RetireNet/Packages.git

	.NET packages

	suse_backports

	http://ftp.suse.com/pub/projects/security/yaml/

	SUSE packages

	debian_oval

	https://www.debian.org/security/oval/

	debian packages

	redhat

	https://access.redhat.com/hydra/rest/securitydata/cve.json

	rpm packages

	nvd

	https://nvd.nist.gov/vuln/data-feeds#JSON_FEED

	none

	gentoo

	https://anongit.gentoo.org/git/data/glsa.git

	gentoo packages

	openssl

	https://www.openssl.org/news/vulnerabilities.xml

	openssl

	ubuntu_usn

	https://usn.ubuntu.com/usn-db/database-all.json.bz2

	ubuntu packages

	github

	https://api.github.com/graphql

	maven, .NET, php-composer, pypi packages. ruby gems

	msr2019

	https://raw.githubusercontent.com/SAP/project-kb/master/MSR2019/dataset/vulas_db_msr2019_release.csv

	maven packages

	apache_httpd

	https://httpd.apache.org/security/json

	apache-httpd

	kaybee

	https://github.com/SAP/project-kb.git

	maven packages

	nginx

	http://nginx.org/en/security_advisories.html

	nginx

	postgresql

	https://www.postgresql.org/support/security/

	postgresql

	elixir_security

	https://github.com/dependabot/elixir-security-advisories

	hex packages

	suse_scores

	https://ftp.suse.com/pub/projects/security/yaml/suse-cvss-scores.yaml

	vulnerability severity scores by SUSE

	mozilla

	https://github.com/mozilla/foundation-security-advisories

	mozilla

	mattermost

	https://mattermost.com/security-updates/

	mattermost server, desktop and mobile apps

Google Summer of Code 2021 Final Report

Organization - AboutCode [https://www.aboutcode.org]

Hritik Vijay [https://github.com/hritik14]

Project: VulnerableCode [https://github.com/nexB/vulnerablecode]

Overview

VulnerableCode is a decentralized python program to collect data about open
source software vulnerabilities across the internet. My proposal for this
year’s Google Summer of Code involved improving the import speed, refactoring
existing code, finding points for overall improvement and adding importers.

Detailed Report

Improve Import Time

Profiling showed that a lot of time was being wasted during auto commits
undertaken by django. Wraping the importer in an atomic block avoids lots of
database commits and shows huge performance improvement. This simple change
allows for much faster import times while not drastically changing the code
structure:

Alpine: 202.7s -> 50.9s
Archlinux 2116.6s -> 107.8s
Gentoo 3176.3s -> 225.8s

Yielding an average of 93% reduction in time (14x faster)

More: https://github.com/nexB/vulnerablecode/pull/478

Speed up upstream tests

VulnerableCode performs upstream tests for all the importers to make sure that
any change change in upstream data structure is easily spotted. This allows us
to have a look at failing importers without actually deploying the application.

Earlier, all of the importers were run one by one in order to verify that they
are intact. While this being the obvious and the full proof way to detect any
anomalies in the imported data schema, it did not work because the time
required to run all the importers much exceeded 6 hours - which is the maximum
time allowed for GitHub actions to run.
With this PR, the updated_advisories method of each importer is expected to
create at least one Advisory object. If it does so, the importer is marked
working. While this is not full proof, it stays much below the allowed resource
usage cap. In the end, this is a trade off between resource usage and data
accuracy. This brings major performance improvement during the test.

Before: ~6hrs, now ~9 minutes

More: https://github.com/nexB/vulnerablecode/pull/490

Improve Docker Configuration

The preferred mode of deployment for VulnerableCode is deploying using Docker
images. Docker configuration existing earlier was very insecure and
rudimentary. I took the inspiration for a uniform Docker configuration from the
ScanCodeIO project and provided with detailed documentation for installation
using a docker image. The current configuration makes use of files like
docker.env to supply container’s environment and .dockerignore to skip
over any unnecessary files for deployment.

More:

https://github.com/nexB/vulnerablecode/pull/497

https://github.com/nexB/vulnerablecode/pull/521

Add Makefile

Makefile usage is prevalent in sister projects like ScanCodeIO [https://github.com/nexB/scancode.io]. It gives VulnerableCode a consistent
behavior and provides a very friendly interface for invocations. This also
avoids security risks like having a default django SECRET_KEY as it can be
easily generated by a make target. I added a Makefile which has a similar
usage as that of ScanCodeIO, replaced all the CI tests to use make, updated the
relevant part of the documentation and updated settings to reject insecure
deployments.

More:

https://github.com/nexB/vulnerablecode/pull/497

https://github.com/nexB/vulnerablecode/pull/523

Use svn to collects tags in GitHubTagsAPI

Surprisingly, GitHub allows svn requests to repositories. Now we can
have all the tags with a single request. This is much more efficient and
gentle to the APIs.
This was as issue since the importers based on GithubDataSource were failing [https://github.com/nexB/vulnerablecode/issues/507] because of being rate
limited by GitHub.

Philippe [https://github.com/pombredanne], thank you so much for the suggestion

More: https://github.com/nexB/vulnerablecode/pull/508

Separate import and improve operations - WIP

This introduces a new concept of improver. Earlier, data fetching and
improvement were done as one single process by importer. This meant that
importers were convoluted and not very modular. The concept of improver
comes from the idea that an importer should only do one thing - import. Any
further improvement on the data is delegated to the improvers. This allows for
us to have multiple ways of improvement with certain confidence on the improved
data making the import and improve operations modular and simpler to work with.
As a bonus, writing importers will be very easy and welcome more contributors
to the project. As of writing this report, this remains a work in progress
which will be finished very soon.

More: https://github.com/nexB/vulnerablecode/pull/525

Others

	helper: split_markdown_front_matter: https://github.com/nexB/vulnerablecode/pull/443

	Dump yaml in favor of saneyaml https://github.com/nexB/vulnerablecode/pull/452

	Refactor package_managers https://github.com/nexB/vulnerablecode/pull/495/commits

	Importers bugfix https://github.com/nexB/vulnerablecode/pull/505

Pre GSoC

I started to like VulnerableCode as soon as I laid eyes on the project. While
exploring the codebase, I realized that there is a lot of room for improvement.
Thus I looked for simple improvements and bugs to fix in the early stage, which
were:

	Correct API docs path and fix pytest invocation [https://github.com/nexB/vulnerablecode/pull/379]

	Explicity provide lxml parser to beautifulsoup [https://github.com/nexB/vulnerablecode/pull/382]

	Make sure vulnerability id is_cve or is_vulcoid [https://github.com/nexB/vulnerablecode/pull/389]

	Fix istio importer [https://github.com/nexB/vulnerablecode/pull/395] (cleared a huge confusion about the codebase)

	Add me to AUTHORS [https://github.com/nexB/vulnerablecode/pull/405] (Should’ve done this a lot earlier)

	Add unspecified scoring system [https://github.com/nexB/vulnerablecode/pull/415]

	Fix redhat import failure [https://github.com/nexB/vulnerablecode/pull/418] (This one took a lot of effort to pinpoint)

	expose find_all_cve helper [https://github.com/nexB/vulnerablecode/pull/439]

Post GSoC - Future Plans and what’s left

I wish to carry on with the development of VulnerableCode and implement the
ideas suggested by my mentors. This will require a lot of effort to bring
VulnerableCode to a stable point. I hope to see VulnerableCode integrated into
the ScanCode toolkit happen in a near future.

Further, if possible, I would like VulnerableCode to interact with other great
open source tools like Eclipse Steady and Prospector. VulnerableCode,
currently, works statically to collect all the vulnerabilities from different
data sources, meanwhile there have been some developments with the Prospector
project of Eclipse Steady. The project aims to scan fix-commits of the git
repository in order to find out if the vulnerable part of a library was
actually used in a project. It is not always the case that if a library is
vulnerable then all the projects building upon it would be vulnerable too. It
is crucial to identify if it is worth updating the library in use and dealing
with the breaking changes. Prospectus is undergoing improvements in order to
be released as a usable public tool. Project KB (Under Eclipse Steady) is
also working on a “tool support for mining repositories and databases of
advisories to establish the (missing) link between vulnerabilities (as
described in natural language in the advisories) and the corresponding
fix-commits”. When these projects are ready for public use I would like to add
them to VulnerableCode as a modules. I hope this will benefit both the projects
and the downstream.

After everything mentioned above, writing importers and improvers is something
that is still left. In my opinion, this needs to be addressed after having a
stable structure for VulnerableCode.

Closing Thoughts

I really enjoyed working on the project. There were ups and downs when I met
some weird bugs but every one of them taught me something new about Python,
Django and programming in general. The best part of working with my amazing
mentors - Philippe and Shivam - were the weekly meets [https://github.com/nexB/vulnerablecode/wiki/WeeklyMeetings#meeting-on-tuesday-2021-08-17-at-1400-utc]
where we would together try to figure out how to proceed with the development.
I learned something new with every call and interaction we had. Thank you so
much my mentors for providing a very smooth experience and Google for showing
me the guiding light for participation.

To the reader, I would really like you to read this [https://en.wikipedia.org/wiki/Program_optimization#When_to_optimize]
before Philippe asks you to ;)

Index

 _images/pkg_details.png
Search for packages @

pypi/aubio

Package details:

purl

Affected by vulnerabi

Vulnerability
VCID-dxr5-n98h-aaaf

VCID-ebsp-fdzq-aaac

VCID-rjc1-h55r-aaae

pkg:pypi/aubio@0.4.7

ies (3)
Summary

aubio has a Buffer Overflow vulnerability in “new_aubio_tempo’

NULL Pointer Dereference aubio has a "new_aubio_onset” NULL
pointer dereference.

aubio v0.4.0 to v0.4.8 has a NULL pointer dereference in
new_aubio_filterbank via invalid n_filters.

Fixing vulnerabilities (6)

Vulnerability
VCID-2x24-vevc-aaag

VCID-6sx4-nwbk-aaas

VCID-hjbg-pigé-aasj

Summary

An issue was discovered in aubio 0.4.6. A buffer over-read can
occur in new_aubio_pitchyinfft in pitch/pitchyinfft.c, as
demonstrated by aubionotes.

Improper Restriction of Operations within the Bounds of a
Memory Buffer An issue was discovered in aubio. A "SEGV" signal
can occur in*aubio_source_avcodec_readframe’ in
“iofsource_avcodec.c’, as demonstrated by “aubiomfcc'.

‘The swri_audio_convert function in audioconvert.c in FFmpeg
libswresample through 3.0.101, as used in FFmpeg 3.4.1, aubio

Aliases

CVE-2018-19800%
GHSA-grmF-4fq6-2r79%
PYSEC-2019-162
CVE-2018-19802%
GHSA-c6jq-hdjp-72pr?
PYSEC-2019-164
CVE-2018-19801%
GHSA-7wr-haps-m7Fh?
PYSEC-2019-163

Aliases

CVE-2018-14523%
PYSEC-2018-63

CVE-2018-14521%
PYSEC-2018-61

CVE-2017-17555%
PYSEC-2017-77

_images/pkg_search.png
Search for packages @

pypi/aubio Search

11 results

Package URL Affected by vulnerabil
pkg:pypi/aubio@0.4.3a1
pkg:pypi/aubio@0.4.3a2
pkg:pypi/aubio@0.4.3
pkg:pypi/aubio@0.4.3.post1
pkg:pypi/aubio@0.4.4
pkg:pypi/aubio@0.4.5
pkg:pypi/aubio@0.4.6
pkg:pypi/aubio@0.4.7
pkg:pypi/aublio@0.4.0
pkg:pypi/aubio@0.4.9
pkg:pypi/aubio@0.4.8

Fixing vulnerab

o

W o ww o v www oo
© w o o o o o o o o

_images/vcio-db-admin-2023-11-27-01.png
key

created

proxy

inheritance

User
<AbstractUser>

‘AutoField
DateTimerield

id
date joined

s active Booleanrield
s staff Booleanfield
is_superuser Booleanfield
last I Date

password, Charfield
usemame Charfield

groups (user)

‘AutoField
Charfield

user_permissions (user)

permissions (group)

Permission
id ‘AutoField
content type Foreignkey (id)
codename Charfield

name Charfield

CharField
OneTooneField (id)
DateTimeield

user (auth_token)

proxy
fnheritance

abstract
heritance

content_type
action flag
action_time
change_message
object id
object_repr

‘AutoField
ForeignKey (id)
ForeignKey (id)
Positivesmallintegerfeld
DateTimefield

Textrield

Textfield

Charfield

User logentry)

AbstractUser
<AbstractBaseUser, PermissionsMixin>
date_joined DateTimerield
email Emailfield
first_name Charfield
is_active Booleanfield
is_staff Booleanfield
is_superuser Booleanfield
last lo DateTimerield
last_name Charfield
password, Charfield
usemame Charfield
abstract abstract
inheritance inheritance
PermissionsMixin AbstractBaseUser

content type (permission)

ContentType
‘Autol
Charfield
Charfield

app Jabel
model

id

content type (logentry)

S

<AbstractBaseSession>

session_key Charfield
expire_date DateTimerield
session_data Textfield
abstract
nheritance

AbstractBaseSession
expire_date DateTimerield

Textrield

session_data

_images/vcio-db-application-2023-11-27-01.png
a utorield

P ——— T sffected packages Jsonrild

id Autorield VulnerabilityRelatedReference = ey P
package Foreignkey (id) . . AutoField id AutoField reference ForeignKey (id) date_collected DateTimeField
::::::te :;:g:::;em)e\d L:E “ :::;::de ForeignKey (id) reference ForeignKey (id) scoring_elements Charfield date_imported DateTimeField
confdence Fostven 3 Charfeld vulnerability scoring system Charield date_published DateTimerield

. value Charfeld references JsoNFeld

fx Sooleanield summary Texteld

unique content d Charkeld

weaknesses Jsoneld

package (packagerelatedvulnerability) wulnerability (packagerelatedvulnerability) \ vulnerabilties (weaknesses) /vuinerabilty (aliases) Uinerabiltty (vulnerabilityrelatedreference) reference (wlnerabiliyrelatedreference) /reference (vuinerabilityseverity)

Package
<PackageURLMixin>

id ‘AutoField

‘Autorield

secage Chomeld egerned :
ol package ul Crarfels Toanela et e
qualifiers JSONField wuinerability id Charfield u -

subpath
type

abstract
nheritance
name Charfield
namespace Charfield
qualifiers Charfield
subpath Charfield
type Charfield
version Charfield

nav.xhtml

 Table of Contents

 		
 Welcome to VulnerableCode!

 		
 VulnerableCode Overview

 		
 What can I do with VulnerableCode?

 		
 Why VulnerableCode?

 		
 How does it work?

 		
 How can I contribute to VulnerableCode?

 		
 User Interface

 		
 Search by packages

 		
 Search by vulnerabilities

 		
 Installation

 		
 Run with Docker

 		
 Get Docker

 		
 Build the Image

 		
 Run the App

 		
 Execute a Command

 		
 Local development installation

 		
 Supported Platforms

 		
 Pre-installation Checklist

 		
 System Dependencies

 		
 Clone and Configure

 		
 Database

 		
 Tests

 		
 Web Application

 		
 Upgrading

 		
 Using Nix

 		
 API overview

 		
 Browse the Open API documentation

 		
 How to use OpenAPI documentation

 		
 Query for Package Vulnerabilities

 		
 Package Bulk Search

 		
 CPE Bulk Search

 		
 API endpoints reference

 		
 Miscellaneous

 		
 API usage administration for on-premise deployments

 		
 Enable the API key authentication

 		
 Create an API key-only user

 		
 Contributing to VulnerableCode

 		
 Do Your Homework

 		
 Ways to Contribute

 		
 First Timers

 		
 Code Contributions

 		
 Documentation Improvements

 		
 Other Ways

 		
 Helpful Resources

 		
 Add a new importer

 		
 TL;DR

 		
 Prerequisites

 		
 PackageURL

 		
 AdvisoryData

 		
 AffectedPackage

 		
 Univers

 		
 Importer

 		
 Writing an importer

 		
 Create Importer Source File

 		
 Specify the Importer License

 		
 Implement the advisory_data Method

 		
 Register the Importer

 		
 Run Your First Importer

 		
 Enable Debug Logging (Optional)

 		
 Add a new improver

 		
 TL;DR

 		
 Prerequisites

 		
 Importer

 		
 Importer Prerequisites

 		
 Inference

 		
 Improver

 		
 Writing an improver

 		
 Locate the Source File

 		
 Explore Package Managers (Optional)

 		
 Implement the interesting_advisories Property

 		
 Implement the get_inferences Method

 		
 Register the Improver

 		
 Run Your First Improver

 		
 Enable Debug Logging (Optional)

 		
 FAQ

 		
 During development, how do I quickly empty my database and start afresh ?

 		
 Miscellaneous

 		
 Continuous periodic Data import

 		
 Environment variables configuration

 		
 Throttling rate configuration

 		
 Importer Overview

 		
 Improver Overview

 		
 Framework Overview

 		
 Model Overview

 		
 Application

 		
 Admin

 		
 Command Line Interface

 		
 $./manage.py –help

 		
 $./manage.py <subcommand> –help

 		
 $./manage.py import <importer-name>

 		
 $./manage.py improve <improver-name>

 		
 $./manage.py purl2cpe –destination <directory

 		
 Importers

 		
 Google Summer of Code 2021 Final Report

 		
 Organization - AboutCode

 		
 Overview

 		
 Detailed Report

 		
 Improve Import Time

 		
 Speed up upstream tests

 		
 Improve Docker Configuration

 		
 Add Makefile

 		
 Use svn to collects tags in GitHubTagsAPI

 		
 Separate import and improve operations - WIP

 		
 Others

 		
 Pre GSoC

 		
 Post GSoC - Future Plans and what’s left

 		
 Closing Thoughts

_images/vuln_fixed_packages.png
Vulnerability detai

VCID-17tmexhzs-aaag

Essentials | Fixed by packages (1) | Affected packages(7) References (12)

Package URL

pkg:maven/org.jenkins-cimain/jenkins-core@2.319

_images/vuln_search.png
Search for vulnerabilities @
CVE-2021

20,860 results previous || 1 a 1083 Next
Vulnerability id Aliases Affected packages Fixed by packages
VCID-17grjowe-aaan CVE-2021-24493 ¢ 0 0
VCID-17hu-m7ks-aaad CVE-2021-41535 ¢ 0 0
VCID-17kk-Tps2-aaaq CVE-2021-29621 ¢ 238 2

GHSA-434h-p4gxjm89 &
PYSEC-2021-90

VCID-17nu-1tve-aaae CVE-2021-1435 & 0 0
VCID-17pc-vrrp-aaab CVE-2021-24744 7 0 0
VCID-17r7-8esr-aaaj CVE-2021-3682 % 4 39
VCID-17rt-bgxy-aaac CVE-2021-0395 & 0 0
VCID-17rv-78vf-aaap CVE-2021-28575 % 0 0
VCID-1759-gfhk-aaab CVE-2021-43925 7 0 0
VCID-17tm-xhzs-aaag CVE-2021-21687 7 1
GHSA-3q84-vrvx-rff 7
VCID-17uf-xv76-2aae CVE-2021-33923 7 0 0
VCID-17xc:xbpy-aaah CVE-2021-36870 7 0 0
VCID-1822-697u-aaaf CVE-2021-41504 7 0 0
VCID-182k-m14n-aaae CVE-2021-25810 7 0 0
VCID-1842-18v3-aaab CVE-2021-28976 7 0 0
VCID-18ap-rajg-aaan CVE-2021-3688 & 2 0
VCID-18¢6-cbhg-aaag CVE-2021-42326 7 0 15
VCID-18dr-y2pm-aaad CVE-2021-21846 7 0 23
VCID-18fm-tq9g-aaan CVE-2021-1173 % 0 0
VCID-18fq-3zkc-aaap CVE-2021-45757 & 0 0

_images/vuln_affected_packages.png
Vulnerability detai
Essentials Fixed by packages (1) | Affected packages (7) | References (12)

Package URL

pkg:maven/org jenkins-ci.main/jenkins-core@2.304

pkg:maven/org jenkins-ci.main/jenkins-core@2.318

pkg:rpm/redhat/jenkins@2.303.3.1637595827-12arch=el8
pkg:rpm/redhat/jenkins@2.303.3.1637596565-12arch=el8
pkg:rpm/redhat/jenkins@2.303.3.1637597018-12arch=el8
pkg:rpm/redhat/jenkins@2.303.3.1637597493-12arch=el8
pkg:rpm/redhat/jenkins@2.303.3.1637698110-12arch=el?

_images/vuln_details.png
Essen!

Is | Fixedbypackages (1) Affected packages(7) References (12)

Vulnerability ID

Aliases

Summary

Severity (10)
System
cwssv3
rhbs
cwssv2
cvssv3
cvssv3.1_ar
rhas
rhas
rhas
rhas

rhas

Fixed by packages (1)

VCID-17tm-xhzs-aaag

CVE-2021-21687%
GHSA-3q84-vrvx-rfyf

Missing Authorization Jenkins does not check agent-to-controller access to create symbolic links
‘when unarchiving a symbolic link in FilePathi#untar.

Score
9.0

high

64

9.1
CRITICAL
Important
Important
Important
Important
Important

Found at
https://access.redhat.com/hydra/rest/securitydata/cve/CVE-2021-21687 json™
https://bugzilla.redhat.com/show_bug.cgi?id=2020324%
https://nvd.nist.gov/vuln/detail/CVE-2021-21687%
https://nvd.nist.gov/vuln/detail/CVE-2021-21687%
https://github.com/advisories/GHSA-3q84-vrvx-rfuf
https://access.redhat.com/errata/RHSA-2021:4799%
https://access.redhat.com/errata/RHSA-2021:4801%
https://access.redhat.com/errata/RHSA-2021:4827%
https://access.redhat.com/errata/RHSA-2021:4829%
https://access.redhat.com/errata/RHSA-2021:4833%

pkg:maven/org.jenkins-cimain/jenkins-core@2.319

Affected packages (7)

pkg:maven/org.jenkins-cimain/jenkins-core@2.304

pkg:maven/org.jenkins-cimain/jenkins-core@2.318

_static/file.png

_static/minus.png

_static/plus.png

